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Overview

1. Decisions under Risk



Non-deterministic Outcomes

Until now: ignored whether or no DM knows exactly the consequences associated to
their actions/choices

e Buying as choosing a lottery
Computer may or may not be faulty
Quality control tries to ensure things are fine, but faulty devices exist
Ex-ante, one may know how likely a computer is to be faulty
Different brands will have different fault probabilities
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Until now: ignored whether or no DM knows exactly the consequences associated to
their actions/choices

e Buying as choosing a lottery
Computer may or may not be faulty
Quality control tries to ensure things are fine, but faulty devices exist
Ex-ante, one may know how likely a computer is to be faulty
Different brands will have different fault probabilities
Risk: situations in which probabilities over outcomes are known and objective

(Later: uncertainty, when DM behaves as if according to subjective probability
distribution)
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Non-deterministic Outcomes

Until now: ignored whether or no DM knows exactly the consequences associated to
their actions/choices
e Buying as choosing a lottery
Computer may or may not be faulty
Quality control tries to ensure things are fine, but faulty devices exist
Ex-ante, one may know how likely a computer is to be faulty
Different brands will have different fault probabilities
Risk: situations in which probabilities over outcomes are known and objective
(Later: uncertainty, when DM behaves as if according to subjective probability
distribution)
Main questions for today:
(i) obtaining a tractable utility representation of preferences over lotteries
(expected utility)

(i) understanding what EU entails behaviourally and when it is more likely to be a
better/worse description of behaviour
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Overview

2. Setup



Setup

e Outcome space: X, finite

x € X entails a complete description of all relevant aspects of the environment.
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e Probability measures on X: A(X) = {p: X — [0,1] | >, p(x) = 1}; (endowed with
Euclidean metric).
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Setup

e Outcome space: X, finite
x € X entails a complete description of all relevant aspects of the environment.
e Probability measures on X: A(X) = {p: X — [0,1] | >, p(x) = 1}; (endowed with
Euclidean metric).
e Lottery: p € A(X) (i.e., a prob. distrib. on X)

Can also think of p as vector in subset of [0, 1]X!.
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Setup

Outcome space: X, finite
x € X entails a complete description of all relevant aspects of the environment.

Probability measures on X: A(X) := {p : X — [0,1] | }_, p(x) = 1}; (endowed with
Euclidean metric).

Lottery: p € A(X) (i.e., a prob. distrib. on X)
Can also think of p as vector in subset of [0, 1]X!.

Preference relation: =C A(X)2.
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Setup

o Degenerate lottery/prob.: 8x € A(X) : 8x(X) = Tj-y (1 is indicator function)

Gongalves (UCL) 5. Expected Utility



Setup

o Degenerate lottery/prob.: 8x € A(X) : 8x(X) = Tj-y (1 is indicator function)

e Probability mixture: for o € [0,1] and p,p’ € A(X),
op +(1-a)p’ € AX) denotes lottery s t.

(op + (1= a)p)(x) = oplx) + (1= o)p’(x) Vx € X
Note:
(1) A(X) convex wrt mixtures
(2) Prob. mixture is not a compound lottery/prob. distr. over A(X)
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Overview

3. Expected Utility
— Properties
— Expected Utility Representation Theorem



Preferences over Lotteries

If - continuous, then U : A(X) = Rst.pzp’ < U(p) > UP).
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Preferences over Lotteries

If - continuous, then U : A(X) = Rst.pzp’ < U(p) > UP).
Suppose X is money and p an actual lottery.
Expected value representation: U(x) = Ep[x] = 3=, p(X)x.

How general would such preferences be?
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Preferences over Lotteries

If - continuous, then U : A(X) = Rst.pzp’ < U(p) > UP).
Suppose X is money and p an actual lottery.

Expected value representation: U(x) = Ep[x] = 3=, p(X)x.
How general would such preferences be?

Choose 8q vs p : gain £10 wp 1/2 and lose £10 wp 1/2.
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Preferences over Lotteries

If - continuous, then U : A(X) = Rst.pzp’ < U(p) > UP).
Suppose X is money and p an actual lottery.

Expected value representation: U(x) = Ep[x] = 3=, p(X)x.
How general would such preferences be?

Choose 8q vs p : gain £10 wp 1/2 and lose £10 wp 1/2.

Choose 8g vs p’ : gain £10,000 wp 1/2 and lose £10,000 wp 1/2.
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Preferences over Lotteries

If - continuous, then U : A(X) = Rst.pzp’ < U(p) > UP).
Suppose X is money and p an actual lottery.
Expected value representation: U(x) = Ep[x] = 3=, p(X)x.
How general would such preferences be?
Choose 8q vs p : gain £10 wp 1/2 and lose £10 wp 1/2.
Choose 8g vs p’ : gain £10,000 wp 1/2 and lose £10,000 wp 1/2.
Same expected value, but some people will choose p over £0 and p’ over £0.

Gongalves (UCL) 5. Expected Utility



Preferences over Lotteries

If - continuous, then U : A(X) = Rst.pzp’ < U(p) > UP).
Suppose X is money and p an actual lottery.
Expected value representation: U(x) = Ep[x] = 3=, p(X)x.
How general would such preferences be?
Choose 8q vs p : gain £10 wp 1/2 and lose £10 wp 1/2.
Choose 8g vs p’ : gain £10,000 wp 1/2 and lose £10,000 wp 1/2.
Same expected value, but some people will choose p over £0 and p’ over £0.
Consider p” : gain £10,000 wp 1/2 and lose £10 wp 1/2.
p’ has far better upside than p and less bad downside than p’; reasonable to
expect people to choose p”’ over p or p’

Looking for representation that relaxes expected value assumption but retains
tractability: separate probability and outcomes
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Expected Utility

Definition

- on A(X) has an expected utility (EU) representation iff 3u : X — R such that vp,p’ €
AX),p = p" < Eplu] > Epu].

u: Bernoulli or von Neumann—Morgenstern utility
Eplul = 3 yex pPX)ux)
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Expected Utility

Definition
- on A(X) has an expected utility (EU) representation iff 3u: X — R such that Vp,p’ €
AX),p = p" < Eplu] > Epu].

u: Bernoulli or von Neumann—Morgenstern utility

Eplul = 3 cex POu(x)
Continuity of = not sufficient for it to admit EU representation
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Independence

Definition

Preference relation - on A(X) sat. independence if vp,p’ € A(X), p = (>)p’ if and only
if vp”" € A(X),and Vo e (0,1], ap + (1— o)p” = (=) ap’ + (1 - a)p”.

~
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Independence

Definition

Preference relation - on A(X) sat. independence if vp,p’ € A(X), p = (>)p’ if and only
if vp”" € A(X),and Vo e (0,1], ap + (1— o)p” = (=) ap’ + (1 - a)p”.

~

NB: independence ‘buys’ linearity in probability
eg.p~p = ap+(1-o)p’ ~p"

Gongalves (UCL) 5. Expected Utility



Independence

Definition

Preference relation - on A(X) sat. independence if vp,p’ € A(X), p = (>)p’ if and only
if vp”" € A(X),and Vo e (0,1], ap + (1— o)p” = (=) ap’ + (1 - a)p”.

~

NB: independence ‘buys' linearity in probability
eg.p~p = ap+(1-o)p’ ~p"
Independence necessary for EU representation -.- expectations are linear in probabilities

Eplul = () Eprlu] = Egpig-ayprlu] = (>) Epr[u] (for o € (0,7])
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Independence

Definition

Preference relation - on A(X) sat. independence if vp,p’ € A(X), p = (>)p’ if and only
if vp” € A(X), and Vo € (0,1, ap + (1 - o)p” = (=) ap’ + (1 - a)p”.

NB: independence ‘buys' linearity in probability
eg.p~p = ap+(1-ap’ ~p"
Independence necessary for EU representation -.- expectations are linear in probabilities
Eplul = () Eprlu] = Egpig-ayprlu] = (>) Epr[u] (for o € (0,7])
Immediately implies ruling out strict preference for randomisation, i.e., cannot have
p~pandop+(1-o)p’ =p'.
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Continuity

{ Definition
Preference relation - on A(X) sat.
(i) Archimedean property if Vp,p’,p” € AX)st p = p’ = p”, Jo.Bp € (0,1) :
op+(1-a)p” = p" = pp+(1-Pp)p”;
(i) vNM continuity ifVp,p’,p” e AX)st.p=p’ = p” Iy €[0,1] :yp+(1-y)p" ~p’.

vNM continuity also necessary for EU representation:
if Eplu] > Ep/[u]l > Epr[u], then 3y € [0,1] s.t. yEp[u] + (1 = Y)Epr[u] = Ep[u];
and linearity Ep wrt p implies

YEp[ul + (1 = V)Epr[ul = Eyp+(1fy)p”[u]~
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EU Representation

Theorem (von Neumann & Morgenstern 1953)

Let X be finite and - a preference relation on A(X).
(i) = satisfies independence and vNM continuity if and only if it admits an expected
utility representation u.

(i) If uand v are two expected utility representations of =, then 3o > 0, B € R such
thatv = au + B.
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EU Representation

Proof
If part of (i) already discussed. Focus on only if.

Step 1. 383, 8x € A(X) such that Véx € A(X), 8z = dx == .



EU Representation

Proof
If part of (i) already discussed. Focus on only if.
Step 1. 383, 8x € A(X) such that Véx € A(X), 8z = dx == .
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(i) If og € 10,1}, claim trivially true.
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EU Representation

Proof
If part of (i) already discussed. Focus on only if.
Step 1. 383, 8x € A(X) such that Véx € A(X), 8z = dx == .

Step 2. Vp,p’ € A(X) s.t. p 2 p', Y{pikizr,..n € AKX), and {oydi=o,.n C (0,1 g0 =1,
we have

app+ Y o S agp’ + Y ap;
iln] ieln]
Proof:
(i) If og € 10,1}, claim trivially true.
(i) Forag € (0,1),1-ag = Y ¢y o define p” = 37, Q‘—&Op/ (€ A(X) - convexity).
(iii) By independence,
ogp+ > ayp; = agp + (1 - ag)p”
i€ln]

zagp’ + (1= ag)p” = agp’ + > ap;.
i€ln]
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EU Representation
Proof: (i) ‘only if’

Step 3. Vp € A(X), 8¢ = p = .



EU Representation
Proof: (i) ‘only if’

Step 3. Vp € A(X), 8¢ = p = .
Proof:
Fix an order on X = {x1,%o,..,Xn} S.t. X; = X and x» = x. By Step 1 and repeated
application of Step 2,
8y = p(x1)85 + p(x2)8g + - - - + p(xn)3x
Z P(x1)8x; +p(x2)85 + - - - +p(xn)dg



EU Representation
Proof: (i) ‘only if’

Step 3. Vp € A(X), 8¢ = p = .
Proof:

Fix an order on X = {x1,%o,..,Xn} S.t. X; = X and x» = x. By Step 1 and repeated
application of Step 2,

85 = p(x1)8x + p(x2)x + - - - + p(xn) Sy
7 P(X1)8x +p(x2)85 + - - - + p(xn)dg
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Step 3. Vp € A(X), 8¢ = p = .
Proof:
Fix an order on X = {x1,%o,..,Xn} S.t. X; = X and x» = x. By Step 1 and repeated
application of Step 2,
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EU Representation
Proof: (i) ‘only if’

Step 3. Vp € A(X), 8¢ = p = .
Proof:
Fix an order on X = {x1,%o,..,Xn} S.t. X; = X and x» = x. By Step 1 and repeated
application of Step 2,

85 = p(x1)8x + p(x2)x + - - - + p(xn) Sy
7 p(x1)3x, +Pp(x2)8x + - - - + p(xn)dx
7 P(x7)8x +P(X2)dx, + - - - + p(Xn) 85

p(x1)3x, + p(x2)x, + - - - + p(Xn)dx, = p
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EU Representation
Proof: (i) ‘only if’

Step 3. Vp € A(X), 8¢ = p = .
Proof:
Fix an order on X = {x1,%o,..,Xn} S.t. X; = X and x» = x. By Step 1 and repeated
application of Step 2,
8y = p(x1)8z + p(x2)8g + - - - + p(xn)3x
&5+ +p(xn)d;

7 P(x1)8x +p(x2) b

7 P(X1)8x +p(x2)dx, + - - - + p(Xn)3x

-

2 P(x1)8x + p(x2)8x, + - - - + p(xn)dx, = p
o

Z Oy

If 8¢ ~ &, set u = c constant; done! (why?)
Otherwise, it must be that 8z > &x.
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EU Representation
Proof: (i) ‘only if’

Step 3. Vp € A(X), 8¢ = p = .
Step4.Vo,B:1>a>B >0, ady+(1-o)d = Bdz+(1-P)dyx.



EU Representation
Proof: (i) ‘only if’

Step 3. Vp € A(X), 8¢ = p = .
Step4.Vo,B:1>a>B >0, od;+(1-)d = B+ (1-P)dx.
Proof:

(i) By independence,

(2)o - (D)o (32 - (52D)]



EU Representation
Proof: (i) ‘only if’

Step 3. Vp € A(X), 8¢ = p = .

Step4.Vo,B:1>a>B >0, ady+(1-o)d = Bdz+(1-P)dyx.

Proof:
(i) By independence,

(228) ser 1= (28)] - (22B) v [1- (22B)] =5

(i) Again by independence,

e+ (1 o). = B +(1- ) [ (£

- B+ (1-B) | (=



EU Representation
Proof: (i) ‘only if’

Step 3. Vp € A(X), 8¢ = p = .

Step4. Vo, B:1>a>p >0, oc&+( = )8y = POz + (1 - B)dx.
Step 5. Vp € A(X), 3y(p) € [0,1] : y(p)85 + (1= ¥(P))dx ~ p.



EU Representation
Proof: (i) ‘only if’

Step 3. Vp € A(X), 8¢ = p = .

Step4.Vo,B:1>a>B >0, ady+(1-o)d = Bdz+(1-P)dyx.

Step 5. Vp € A(X), 3v(p) € [0,1]: ¥(p)85 + (1 = v(p))dx ~ p.
Proof:
() By Step 3,8z Z p < 8.
(i) vNM continuity ensures existence of ay € [0,1].
(iii) By Step 4, it must be unique (why?).
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EU Representation
Proof: (i) ‘only if’
Step 3. Vp € A(X), 8¢ = p = .
Step4.Vo,B:1>a>p >0, ou?&+ - a)dx > P&+ (1 - B)dx.

(
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EU Representation
Proof: (i) ‘only if’

Step 3. Vp € A(X), 8¢ = p = .

Step 4. Vo, 1> oc>Bz 0, ou?&+( - )8y = Béz + (1—B)dx.
Step 5. Vp € A(X), 3v(p) € [0,1]: ¥(p)85 + (1 = v(p))dx ~ p.
(

Step 6. Defineu: X — Rs.t. u( X) = ¥(8). Then, y(p) = 3 jcjn PXi)Y(3x)-
Proof: WTS

~ (Z P(XJ)Y(5X,)) &z + (1 -3 P(Xi)Y(sx,)) Oy
i€ln] i€[n]



EU Representation
Proof: (i) ‘only if’
Step 3. Vp € A(X), 8¢ = p = .

Step4.Voc,[3:120c>620 ou?&+( )8y = PBéz + (1— B)dx.

Step 5. vp € A(X), Iy(p) € [0,1]: v(p)3z + (1 = ¥(0))dx ~ p.
Step 6. Defineu: X — Rs.t. u( ) = 1(8x). Then, y(p) = 3 cin PXi)Y(8x)-
Proof: WTS

p~ (Z P(XJ)Y(5X,)) &z + (1 -3 P(Xi)Y(sx,)) Oy
i€ln] iln]

By repeated application of independence Step 2, and definition of v,

p= Zp X))8x, ~ Zp X;) [¥(8x)8% + (1= ¥(8x))8]

:ZP(X/') (3x)) &‘LZP (8x,))) 8x
=

(i) The claim follows from Step 5.
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EU Representation
Proof: (i) ‘only if’

Step 3. Vp € A(X), 8¢ = p = .

Step4.Vo,B:1>a>p >0, ou?&+( - )8y = Boz + (1—B)dx.

Step 5. vp € A(X), Iy(p) € [0,1]: v(p)3z + (1 = ¥(0))dx ~ p.

Step 6. Defineu: X — Rs.t. u( X) = ¥(8). Then, y(p) = 3 jcin PXi)Y(8x)-
Step 7. Take any p,p’ € A(X). p = p’ <= Eplul > Ep/[ul.

Proof:
(i) By Step 4 and Step 5, v(p)3z + (1= ¥(p))8x ~ p Z p" ~ ¥(p")8x + (1= 1(p"))8x.
iff y(p) > v(p").

(i) By Step 5 and Step 6, it follows Eplyl = 3=, P(Xi)¥(8x) = (p).
(iii) By definition, Eplu] = Ep[y].

Gongalves (UCL) 5. Expected Utility



EU Representation

Proof: (ii)

WTS: If uand v are two EU representations of =, then doe > 0, € Rs.t. v = awu + P.
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Proof: (ii)
WTS: If uand v are two EU representations of =, then doe > 0, € Rs.t. v = awu + P.
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EU Representation
Proof: (ii)
WTS: If uand v are two EU representations of =, then doe > 0, € Rs.t. v = awu + P.
(i) If 8¢ ~ 8x, both uand v are constants; done. Then, let 85 > 8.
(i) Take u defined in (i) and let v be some other EU representation of =.
(iii) Note that vp € A(X), it must v(X) > Eplv] > v(x).
(iv) Define ¢(p) € [0,1] : ¢(p)v(X) + (1 = ¢(P))v(x) = Eplv].

There is exactly one such number.

(v) Since OPIVE) + (1= 0PIV = Eg)s+a-o(p)s, V)
we have that
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EU Representation

Proof: (ii)

WTS: If uand v are two EU representations of =, then doe > 0, € Rs.t. v = awu + P.
(i) If 8¢ ~ 8x, both uand v are constants; done. Then, let 85 > 8.
(i) Take u defined in (i) and let v be some other EU representation of =.

(iii) Note that vp € A(X), it must v(X) > Eplv] > v(x).

(iv) Define ¢(p) € [0,1] : ¢(p)v(X) + (1 = ¢(P))v(x) = Eplv].

There is exactly one such number.

(v) Since OPIVE) + (1= 0PIV = Eg)s+a-o(p)s, V)

we have that

0(p)35 + (1= 6(p))dx ~ p ~ v(p)85 + (1~ (p))dx

(Vi) By Step 5, v(p) = ¢(p). Hence, v(x;) = ¥(8x)v(X) + (1 = (8x))v(x).
(vii) Hence, u = VP)VQQ = v=au+p,witha =vX) - v(x)and p = v(x).
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EU Representation

{ Theorem (von Neumann & Morgenstern 1953)

Let X be finite and - a preference relation on A(X).
(i) = satisfies independence and vNM continuity if and only if it admits an expected
utility representation u.

(i) If uand v are two expected utility representations of -, then Ja > 0, B € R such
thatv = au + .

EU representations are unique up to positive affine transformations; cardinal
interpretation of u.
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Overview

4. More
— Compound Lotteries
- Issues with Expected Utility



Compound Lotteries

What is a compound lottery?
p:+£Swp 1/2,-£5wp 1/2
p’: +£5,000 wp 1/2, -£5 wp 1/2
Lpwp1/2,p" wp1/2
£ 7p”: +£5,000 wp 1/4, +£5 wp 1/4, -£5 wp 1/2
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Compound Lotteries

What is a compound lottery?
p:+£Swp 1/2,-£5wp 1/2
p’: +£5,000 wp 1/2, -£5 wp 1/2
Lpwp1/2,p" wp1/2
£ 7p”: +£5,000 wp 1/4, +£5 wp 1/4, -£5 wp 1/2

Segal (1990 Ecta) discusses preferences > on A(A(X)) and the relation with preferences
= on A(X)

Treating compound lotteries and mixtures differently: failure to reduce compound
Lotteries
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Compound Lotteries

What is a compound lottery?
p:+£Swp 1/2,-£5wp 1/2
p’: +£5,000 wp 1/2, -£5 wp 1/2
Lpwp1/2,p" wp1/2
£ 7p”: +£5,000 wp 1/4, +£5 wp 1/4, -£5 wp 1/2
Segal (1990 Ecta) discusses preferences > on A(A(X)) and the relation with preferences
= on A(X)
Treating compound lotteries and mixtures differently: failure to reduce compound
Lotteries

Turns out that attitudes specific to compound lotteries seem to be closer related
to attitudes toward uncertainty than to attitudes toward simple lotteries (e.g.,
Ortoleva & Dean 2019 PNAS)
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Allais Paradox (1953 Ecta)

Paris, sometime between 12 and 17 May 1952, over lunch at conference on choice
under risk

Maurice Allais asks J. Leonard Savage
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Allais Paradox (1953 Ecta)

Paris, sometime between 12 and 17 May 1952, over lunch at conference on choice
under risk

Maurice Allais asks J. Leonard Savage
1. Which of the following two gambles do you prefer?
a) £2 million wp 1; or
b) £2 million wp .89; £10 million wp .10; nothing wp .01.
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Allais Paradox (1953 Ecta)

Paris, sometime between 12 and 17 May 1952, over lunch at conference on choice
under risk

Maurice Allais asks J. Leonard Savage
1. Which of the following two gambles do you prefer?
a) £2 million wp 1; or
b) £2 million wp .89; £10 million wp .10; nothing wp .01.
Savage chose a)
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Allais Paradox (1953 Ecta)

Paris, sometime between 12 and 17 May 1952, over lunch at conference on choice
under risk

Maurice Allais asks J. Leonard Savage
1. Which of the following two gambles do you prefer?
a) £2 million wp 1; or
b) £2 million wp .89; £10 million wp .10; nothing wp .01.
Savage chose a)
Allais asked:
2. Which of the following two gambles do you prefer?
A) nothing wp .89; £2 million wp .11; or
B) nothing wp .90; £10 million wp .10.
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b) £2 million wp .89; £10 million wp .10; nothing wp .01.
Savage chose a)
Allais asked:
2. Which of the following two gambles do you prefer?
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B) nothing wp .90; £10 million wp .10.
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Allais Paradox (1953 Ecta)

Paris, sometime between 12 and 17 May 1952, over lunch at conference on choice
under risk

Maurice Allais asks J. Leonard Savage
1. Which of the following two gambles do you prefer?
a) £2 million wp 1; or
b) £2 million wp .89; £10 million wp .10; nothing wp .01.
Savage chose a)
Allais asked:
2. Which of the following two gambles do you prefer?
A) nothing wp .89; £2 million wp .11; or
B) nothing wp .90; £10 million wp .10.
Savage chose B)
Choosing a) and B) [or b) and A)] cannot be rationalised by EU (why?)
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Issues with Expected Utility

Common consequence paradox.
Also common ratio paradox (preference reversal following mixture with 0).
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Issues with Expected Utility

Common consequence paradox.

Also common ratio paradox (preference reversal following mixture with 0).

Should we just throw away EU?
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Issues with Expected Utility

Common consequence paradox.
Also common ratio paradox (preference reversal following mixture with 0).

Should we just throw away EU?
EU has normative appeal and people should behave according to its principles.

(Savage considered he had been ‘tricked’ and wrote to Allais saying he still thought
principles were sound)
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Issues with Expected Utility

Common consequence paradox.
Also common ratio paradox (preference reversal following mixture with 0).

Should we just throw away EU?
EU has normative appeal and people should behave according to its principles.

(Savage considered he had been ‘tricked’ and wrote to Allais saying he still thought
principles were sound)

EU is still a useful model for choice under risk
Understanding better when it holds and when it fails is illuminating
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More

Rank-Dependent Expected Utility (Quiggin, 1982 JEBO); cumulative prospect theory
(Tversky & Kahneman, 1992 JRU)
Main gist: small probabilities of the worst events loom larger than they are
Attracted lots of discussion recently (a good topic for a survey)
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More
Rank-Dependent Expected Utility (Quiggin, 1982 JEBO); cumulative prospect theory
(Tversky & Kahneman, 1992 JRU)
Main gist: small probabilities of the worst events loom larger than they are
Attracted lots of discussion recently (a good topic for a survey)
Cautious Expected Utility (Cerreia-Vioglio, Dillenberger, & Ortoleva, 2015 Ecta)

Relaxes independence to: Vp,p’ € A(X), x € X,and a. € [0, 1], if p = 8%, then
op+(1-—a)p’ = ade+(1-a)p’.
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Rank-Dependent Expected Utility (Quiggin, 1982 JEBO); cumulative prospect theory
(Tversky & Kahneman, 1992 JRU)
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Attracted lots of discussion recently (a good topic for a survey)

Cautious Expected Utility (Cerreia-Vioglio, Dillenberger, & Ortoleva, 2015 Ecta)
Relaxes independence to: Vp,p’ € A(X), x € X,and a. € [0, 1], if p = 8%, then

op+(1-o)p’ Zadx+(1-ap’.
Ordered Reference Dependent Choice (Lim, 2021 WP)

Way in which alternatives are compared depend on set of alternatives, e.g.,
existence of sure things, riskiness’ of riskiest alternative, etc.
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More
Rank-Dependent Expected Utility (Quiggin, 1982 JEBO); cumulative prospect theory
(Tversky & Kahneman, 1992 JRU)

Main gist: small probabilities of the worst events loom larger than they are
Attracted lots of discussion recently (a good topic for a survey)

Cautious Expected Utility (Cerreia-Vioglio, Dillenberger, & Ortoleva, 2015 Ecta)
Relaxes independence to: Vp,p’ € A(X), x € X,and a. € [0, 1], if p = 8%, then

op+(1-o)p’ Zadx+(1-ap’.
Ordered Reference Dependent Choice (Lim, 2021 WP)

Way in which alternatives are compared depend on set of alternatives, e.g.,
existence of sure things, riskiness’ of riskiest alternative, etc.

Cognitive Perception of Risk
Choice under risk and computational complexity (Oprea, 2024 AER)
Uncertainty regarding valuation
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More
Rank-Dependent Expected Utility (Quiggin, 1982 JEBO); cumulative prospect theory
(Tversky & Kahneman, 1992 JRU)
Main gist: small probabilities of the worst events loom larger than they are
Attracted lots of discussion recently (a good topic for a survey)
Cautious Expected Utility (Cerreia-Vioglio, Dillenberger, & Ortoleva, 2015 Ecta)
Relaxes independence to: Vp,p’ € A(X), x € X,and a. € [0, 1], if p = 8%, then
op+(1-o)p’ 7 ade+(1-a)p’.
Ordered Reference Dependent Choice (Lim, 2021 WP)
Way in which alternatives are compared depend on set of alternatives, e.g.,
existence of sure things, riskiness’ of riskiest alternative, etc.
Cognitive Perception of Risk
Choice under risk and computational complexity (Oprea, 2024 AER)
Uncertainty regarding valuation
Robustness and Misspecification
Climate change, limited knowledge, limited modelling capacity
Variational preferences (Cerreia-Vioglio et al.)
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